

Issued Date: 2023. 6

광섬유케이블규격

리본튜브단일시스

- ▶단일모드 G652D/G657A1
- ▶리본루즈튜브
- ▶금속 인장선
- ▶PE 피복

Prepared by: J. Y. LEE

Approved by: S.H. KIM

1. 적용범위

본 규격은 광통신시스템 선로에 사용되는 장파장용 단일모드 광섬유(G652D 또는 G657A1)를 사용하는 리본루즈튜브, 금속인장선 구조의 단일외장 광섬유케이블에 대하여 적용한다.

2. 종 류

2.1 리본튜브 단일시스 광섬유 케이블의 종류, 케이블외경, 케이블중량 및 최대 허용인장력은 표 1 과 같다.

구 분	광섬유	케이블 외경	케이블중량	최대허용인장력
T E	코어수	Nom.(mm)	Nom.(kg/km)	(kgf)
	~360C	20.7	290	380
	432C	22.8	350	380
리본튜브	504C	24.8	410	380
다는ㅠ드 단일시스	576C	27.0	540	550
(비난연)	648C	29.0	610	550
(8/22)	720C	31.2	700	750
	792C	33.3	780	750
	864C	35.3	880	750

3. 재료 및 구조 형태

3.1 재료

- 3.1.1 광섬유 심선
 - (1) 광섬유 심선의 코어(Core)와 클래딩(Cladding)은 석영계 유리를 주재료로 하여야 한다.
 - (2) 광섬유 심선의 코팅재료는 수지(Plastic) 계열의 것으로서 필요시(접속, 측정 등)에 벗겨져야 한다.
 - (3) 1 차코팅상태에서 100kpsi(0.69GPa)이상의 인장시험(Proof Test)을 연속적으로 거친 것을 사용하여야 한다.

3.1.2 리본광섬유

리본광섬유는 광섬유를 일렬로 배열한후 코팅한것으로 코팅재료는 수지계열의 것으로 필요시(접속, 측정등) 적당한 탈피공구를 이용하여 쉽게 벗겨져야 한다

3.1.3. 젤리 콤파운드

- (1) 비전도성, 비흡수성 및 방부성의 재료를 사용하여야 하며, 심선 식별에 영향을 미치지 않아야 한다.
- (2) 이물질이나 독성이 없고 케이블 특성에 영향을 미치지 않아야 한다.
- (3) 심선 접속 작업 시 쉽게 제거할 수 있어야 한다.

3.1.4 리본루즈튜브

리본루즈튜브는 TPE(Thermo Plastic Elastomer)수지 계열의 것으로 사용하여야 한다.

3.1.5 개재심(Filler)

케이블의 원형 유지를 위해 튜브 외에 개재심(필러)을 사용할 수 있으며, 개재심은 폴리머(Polymer)재질을 사용하여야 한다.

3.1.6 중심인장선

중심인장선은 아연도강선 또는 강연선을 사용한다, 또한 필요시 중심인장선에 PE 코팅을할 수 있다.

3.1.7 방수사 & 방수테이프

방수사, 방수 테이프는 방수 특성을 만족시키는 것이어야 한다

3.1.8 립코드(RIP CORD)

케이블외피 탈피가 가능한 폴리에스터 또는 동등이상의 재료이어야 한다

3.1.9 인장 보강층

인장보강층은 유리 강화 섬유(Glass yarn) 또는 동등 이상의 재료이어야 한다.

3.1.10 외피용 PE

외피용 PE 는 흑색 PE 를 사용하여야 한다.단 난연 요구시 난연흑색 PE 를 사용하여야 한다

3.2 구조 및 형태

3.2.1 광섬유 심선

광섬유 심선의 구조는 부도 1 과 같아야 한다

3.2.2 리본광섬유

1) 리본광섬유는 12심 광섬유로 구성하며 일렬로 배열한 후 UV 경화재로 코팅하여야 하며, 광섬유의 특성을 저하시키지 않아야 하며, 심선 식별에 영향을 미치지 않아야 한다. 리본광섬유의 구조는 부도 2 와 같아야 하며, 리본의 규격은 표 2 와 같아야 한다. 한다.

표 2. 리본광섬유 규격

구분	두께(mm)	폭(mm)
12 심리본	0.35±0.08	3.1+0.2,-0.1

2) 리본광섬유내 광섬유 심선은 식별이 용이해야 하며, 변색되지 않아야 하며 그 색상은 표 3 과 같아야 한다

표 3. 색상 식별표

번호	색상	번호	색상
1	청(Blue)	7	갈(Brown)
2	등(Orange)	8	흑(Black)
3	녹(Green)	9	백(White)
4	적(Red)	10	회(Gray)
5	황(Yellow)	11	청록(Aqua)
6	자(Violet)	12	분홍(Pink)

3) 리본루즈튜브내 각층 리본식별을 위해 리본표면에 확인하기 쉬운 색상과 글자체를 이용하여 표 4 와 같이 30Cm 이하 간격으로 인쇄하여 표시한다..

표 4.리본튜브내 리본식별을 위한 리본마킹내용

층	1 층	2 층	3 층	4 층	5 층	6 층
마킹내용	#1 SM	#2 SM	#3 SM	#4 SM	#5 SM	#6 SM

3.2.3 리본 루즈튜브

루즈튜브내 리본광섬유 와 젤리 콤파운드를 삽입하여 리본 루즈튜브(유니트)를 구성하며 유니트내 심선수는 72 심(12 심리본 X, 6 층)이며, 유니트간 식별을 위하여 표 3 과 같이 색상으로 구분한다

3.2.4 케이블 인장선

케이블 인장선은 케이블의 중심에 위치하거나, 케이블의 외피 속에서 외피와 동심원상에 적당한 간격으로 배열하여야 한다.

3.2.5 케이블심

리본루즈튜브와 개재심을 중심인장선 위에 동심원상에 표 5 와 같이 SZ 형태로 집합하고, 방수테이프를 적용한다. 이때 리본루즈튜브와 중심인장선 사이에 방수 특성을 위해 방수 사를 삽입할 수 있으며. 광케이블특성을 향상시키기 위해 기타 유니트 지지물, 완충재 등 을 사용 할 수 있다. 케이블심의 심선수별 유니트 구성은 표 6 과 같으며 유니트내 심선수 가 상이한 규격의 경우 잔여 심선을 마지막 유니트에 적용한다

광케이블심의 구조는 부도 3 과 같아야한다

표 5 심선수별 유니트 구성

심선수	심선수/ 유니트	튜브수	개재수	유니트구성	
144	72	2	3	1층구조	1*5유니트구조
216	72	3	2	1층구조	1*5유니트구조
288	72	4	1	1층구조	1*5유니트구조
360	72	5	0	1층구조	1*5유니트구조
432	72	6	0	1층구조	1*6유니트구조
504	72	7	0	1층구조	1*7유니트구조
576	72	8	0	1층구조	1*8유니트구조
648	72	9	0	1층구조	1*9유니트구조
720	72	10	0	1층구조	1*10유니트구조
792	72	11	0	1층구조	1*11유니트구조
864	72	12	0	1층구조	1*12유니트구조

3.2.6 케이블 외피

3.2.5 항에서 형성된 케이블심 위에 흑색 PE 또는 난연 흑색 PE 로 접속점 없이 균일하게 피복하여야 한다.

이때 필요시 인장보강층 또는 방습층을 PE 압출전 적용할 수있으며, 케이블외피 탈피가용이하게 하기 위하여 립코드를 적용할수 있다.

또한 고객요구시 180도 간격으로 유색의 줄무늬 2줄을 적용할수 있다

4. 성능

4.1 광케이블 광학적특성

광케이블의 광섬유는 표6과 같은 광학적 특성을 만족하여야한다.

표 6-1. 단일모드 광섬유(G652D) 심선의 광학적 특성

항목	단위	규격치	비고
손실계수	1310nm	0.36dB/km 이하	
	1550nm	0.22dB/km 이하	
구부림손실	1550nm	0.1dB	직경 75mm, 100회
손실균일성	d(운용파장)	0.05dB	
파장별	1285~1330nm	0.1dB/km 이하	1310nm 기준
손실차	1525~1575nm	0.05dB/km 이하	1550nm 기준
색분산 계수	1290~1330nm	3.2ps/nm.km 이하	
	1550nm	18ps/nm.km	
영분산파장		1300~1322nm	
색분산 기울기		0.095ps/nm².km 이하	
차단파장		λ cc ≤ 1260nm	
모드필드 직경		9.2±0.4 μm	
클래딩 직경		125±1 μm	
클래딩 비원율		1% 이하	
코팅 외경		245±10 μm	

표 6-2. 단일모드 광섬유(G657A1) 심선의 광학적 특성

항목	단위	규격치	비고
	1310nm	0.36dB/km 이하	
손실계수	1383nm	0.22dB/km 이하	
	1550nm	0.22dB/km 이하	
	1550nm	0.27dB/km 이하	
	1550nm	0.75B 이하	직경 20mm, 1 회
구부림손실	1625nm	1.5dB 이하	직경 20mm, 1 회
	1550nm	0.25dB 이하	직경 30mm, 10 회
	1625nm	1.0dB 이하	직경 30mm, 10 회
손실균일성	성(운용파장)	0.05dB	
파장별	1285~1330nm	0.05dB/km 이하	1310nm 기준
- 파양글 - 손실차	1525~1565nm	0.03dB/km 이하	최대값-최소값기준
근글시	1565~1610nm	0.03dB/km 이하	최대값-최소값기준
색분산 계수	1290~1330nm	3.2ps/nm.km 이ਰੇ	
	1550nm	18ps/nm.km	
영분(산파장	1300~1322nm	영분산파장에서
색분산	기울기	0.095ps/nm².km 이하	
차딘	·파장	λ cc ≤ 1260nm	
모드필드 직경		8.9±0.4 μm	
클래딩 직경		125±1 μm	
클래딩 비원율		1% 이하	
코팅 외경		245±10 µm	
클래딩	비원율	1% 이하	
코팅	외경	245±10 μm	

4.2 기계/환경 특성

광섬유 케이블은 다음과 같은 기계적, 환경적 특성을 만족하여야 한다. 단 특성 측정치계측기의 사용파장은 단일모드 광섬유일 경우는 1550nm 로 한다. 계측기의 측정 오차 ±0.02dB를 인정한다.

4.2.1 온도 특성

임의로 추출된 광케이블 드럼을 항온조에 넣어 4.2.1.1 과 같은 온도특성 시험을 진행하였을 때 아래 4.2.1.2 항의 특성을 만족하여야 한다.

4.2.1.1 온도변화과정

과정	온도	습도	유지시간
1	+20°C±3°C	90%이상	24 시간
2	+60°C±3°C	90% 이상	24 시간
3	-30°C±3°C	-	24 시간
4	+20°C±3°C	90% 이상	24 시간

4.2.1.2 요구특성

임의로 추출된 광섬유에 대하여 과정별로 끝에서 손실을 측정하였을 때 과정 1 의 경과시간이 지난 후 손실치를 기준으로 하여 다음 특성을 만족하여야 한다. 이때, 시료의 전장이 1km 이하일 경우에는 2 코어 이상의 심선을 접속하여 시험한다.

항목	손실특성 범위
과정 2,과정 3 각각의 최대 손실변화	0.2dB/km 이하
원상 복구시(과정 4) 최대 손실변화	0.1dB/km 이하

4.2.2 인장 특성

9~25m 사이의 두 맨드렐(Mandrel)에 길이 90m 이상의 케이블을 2 번 이상 감은 후, 케이블 1km 무게의 2/3 배에 해당하는 힘으로 50mm/분의 속도로 인장하고 1 시간을 유지하였을 때 광섬유의 절단이나 케이블 외피에 균열이 없고 손실변화는 0.1dB 이하여야 한다. 이때 맨드렐의 직경은 케이블 직경의 30 배 이하이여야 한다.

4.2.3 굴곡 특성

케이블의 임의 지점에서 케이블 외경의 20 배 되는 원동에 ±180°로 5 회 굴곡하였을 때 광섬유의 절단이나 케이블 외피에 균열이 없고 손실 변화가 0.1dB 이하이여야 한다.

4.2.4 압축 특성

케이블의 임의지점에서 50 ±5mm 의 정사각형 금속평판을 100Kg 하중으로 5 분간 압축하였을 때 광섬유의 절단이나 케이블 외피에 균열이 없고 손실 변화가 0.1dB 이하이여야 한다.

4.2.5 비틀림 특성

케이블의 임의 지점에서 한 지점을 고정시키고, 이 지점으로부터 2m 되는 지점에서 50kg 의 인장 하중을 주면서 ± 360°로 10 회 비틀었을 때 케이블 외피에 균열이 없고

손실 변화가 0.1dB 이하이여야 한다.단,케이블 직영이 30mm 이상인 케이블에 대해서는 비틀림지점을 4m 이하가 되도록한다

4.2.6 충격 특성

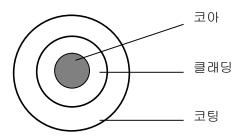
케이블의 임의지점에서 직경 25mm, 무게 1.2Kg 인 금속봉을 1m 높이에서 10 개 부위에 각 1 회씩 떨어뜨렸을 때 케이블 외피에 균열이 없고 손실변화가 0.1dB 이하이여야 한다. 4.2.7 방수 특성

3m 길이의 케이블 양단을 깨끗이 절단 후 수평으로 놓고, 한쪽 끝에 1m 높이의 수압을 온도 23±2℃에서 1 시간 동안 가했을 때 다른 쪽 끝으로 물이 새어 나오지 않도록 한다. 4.2.8 난연 특성(IEEE 383)-(난연케이블시에만 해당)

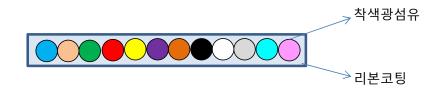
길이 8ft(2438.4mm),폭 12inch(304.8mm),깊이 3inch(76.2mm)의 트레이를 바닥에 볼트로고정시킨후 트레이 중앙에서부터 6inch(152.5mm)부분까지 여러조의 케이블을 각케이블경의 1/2 정도 간격으로 배열한다. 화염온도는 1500F(815℃)불꽃으로 20 분간가열했을 때 불꽃원 위로 트레이 전길이를 연소 및 전가하지말아야하며 불꽃이제거되었을 때 자기소화성이 있어야한다

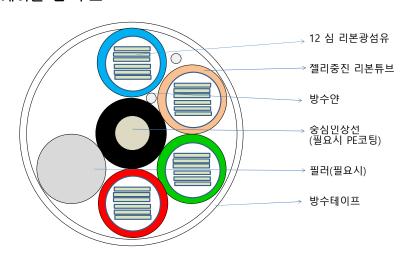
5. 표시

광케이블 외피에는 1m 마다 시단에서 종단으로 케이블 길이, 제조년도, 케이블규격명, 제조자명, 제조번호(xxxx)를 연속적으로 표시하여야 한다. 고객의 요청에 의해 케이블 외피에 색상 띠줄, 마크 등이 추가 될 수 있으며, 내용 및 위치는 고객 요청에 따른다.

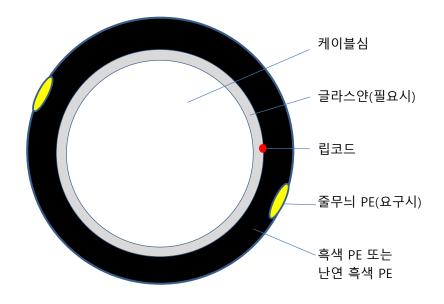

6. 포장

케이블 양단에는 습기가 침입하지 않도록 PVC 캡 또는 적당한 재료로 밀봉되어야 한다. 광섬유 케이블 드럼에는 다음 사항을 표시한다.


- 1) 제작회사명 및 제조년월일
- 2) 케이블품명, 규격 및 조장
- 3) 케이블 총중량 및 실중량
- 4) 케이블 끝 표시
- 5) 케이블 풀림방향, 굴림방향


부도 1 광섬유 심선 구조

부도 2 리본 광섬유 구조



부도 3 광케이블 심 구조

부도 4 리본튜브 단일외장 광케이블의 외피구조

